Mechanisms of Resistance to Monoclonal Antibody Therapies in Cancer: Molecular, Cellular, and Tumor Microenvironment Factors Contributing to Therapeutic Evasion

Inamdar F

Abstract

Monoclonal antibody (mAb) therapies have emerged as a key component of cancer treatment by offering a targeted and precise approach to combating various types of malignancies. Unlike conventional treatments such as chemotherapy, mAbs are engineered to recognize and bind to specific proteins (antigens) expressed on cancer cells, allowing for minimal damage to healthy tissues. These therapies are widely used in cancers such as HER2-positive breast cancer, B-cell lymphomas, colorectal cancer, and non-small cell lung cancer (80). Through immune activation, inhibition of growth signaling, and delivery of cytotoxic agents, mAbs have significantly improved patient survival rates and quality of life.

While monoclonal antibody (mAb) therapies are effective, their long-term success is hindered by the development of resistance. Studies suggest that approximately 30-50% of patients treated with mAbs eventually develop resistance due to various mechanisms, limiting the therapy's efficacy (20). This complex resistance arises from multiple molecular, cellular, and environmental factors. These combined factors allow cancer cells to escape therapeutic targeting and continue to grow.

Recent findings highlight innovative strategies to overcome these barriers. Next-generation mAbs, including bispecific antibodies and antibody-drug conjugates (ADCs), are designed to address antigen heterogeneity and improve delivery (24). Advances in personalized medicine, guided by genomic and proteomic profiling, enable treatment customization based on the unique characteristics of individual tumors (33). This review aims to comprehensively understand the mechanisms driving resistance to mAb therapies and explore emerging solutions to mitigate these challenges. By bridging the gap between research findings and clinical applications, the findings highlight the importance of a multidisciplinary approach, which leverages molecular biology, immunology, and pharmacology to combat resistance and enhance the therapeutic potential of mAbs in oncology. Through addressing resistance, the field can move closer to achieving the full potential of monoclonal antibodies in the fight against cancer.

1Fia Inamdar, Kodaikanal International School, Joy Sapphire, N.S. Road No. 6, Vile Parle (W), Mumbai-400056, Maharashtra, India, fiainamdar@outlook.com

Key Words:

Monoclonal Antibodies (mAbs), Cancer Therapy Resistance, Tumor Microenvironment, Antigen Loss, Immune Evasion, EGFR Mutation, HER2 Resistance, Receptor Variants, Antibody-Drug Conjugates (ADCs), Bispecific Antibodies, Immune Checkpoint Inhibitors, Fc Receptor Downregulation, Drug Efflux, Tumor Heterogeneity, Personalized Oncology, Real-Time Adaptive Therapy.

Table 1: Table of Contents

Section No.	Title
1	Introduction
1.1	Monoclonal Antibodies: Production and Application
2	Materials and Methods
3	Background
3.1	Mechanisms of Resistance in mAb Therapies
3.1.1	Tumor Cell-Intrinsic Mechanisms
3.1.2	Checkpoint Inhibition and Immune Evasion
3.1.3	Reduced Effector Function
3.1.4	Mechanisms of Reduced Effector Function
3.2	Tumor Microenvironment-Related Mechanisms
3.2.1	Immune Suppression
3.2.2	Physical Barriers
3.3	Drug Resistance Mechanisms
3.3.1	Drug Efflux and Uptake Challenges
3.3.2	Antibody-Drug Conjugates (ADCs)
4	Discussion
4.1	Altered Receptor Signaling: Overexpression, Phosphorylation, and Variant Forms

4.2	Increased Expression of the Target Receptor
4.3	Impact on Therapeutic Outcomes
4.4	Alternative Pathway Activation
4.5	Steric Hindrance by Other Cell Surface Proteins
4.6	Secretion of Alternative Ligands
4.7	Drug Influx/Efflux Mechanisms
4.7.1	Multidrug Resistance Proteins (MDR)
4.7.2	Irregular Tumor Vasculature
4.7.3	Combined Impact and Therapeutic Implications
4.8	Genomic Alterations and Mutations
4.9	Gene Amplification and Overexpression
4.10	KEGG Pathways with Resistance Mechanisms
5	Addressing the Impact of Resistance and Innovations in mAb Therapy
6	Limitations in mAb Research and Review
6.1	Overemphasis on Clinical Successes and Underrepresentation of Real-World Data
6.2	Fragmented Understanding of Resistance Mechanisms
6.3	Limitations of Preclinical Methods
6.4	Economic and Logistical Barriers
6.5	Inconsistencies in Data Reporting and Analysis
6.6	Emerging Technologies with Untested Challenges
6.7	Recommendations for Addressing Limitations
7	Future Directions and Strategies to Overcome Resistance
7.1	Combination Therapies
7.2	Bispecific Antibodies and Their Therapeutic Potential

7.3	Immune Checkpoint Inhibitors
7.4	Advancements in ADCs
7.5	Targeting Emerging Resistance Mechanisms
7.6	Nanoparticle Delivery Systems
7.7	Next-Generation Monoclonal Antibodies: Leveraging Protein Dynamics to Overcome Resistance
7.8	Real-Time Adaptive mAb Therapies
7.9	Personalised Medicine in mAb Therapies
8	Conclusion

1 Introduction

Cancer remains one of the most formidable challenges in modern medicine, accounting for millions of deaths worldwide each year. With over 2.04 million new cases reported in 2025, the need for effective and targeted cancer therapies is more urgent than ever. Among the transformative advancements in oncology, monoclonal mAb therapies have become a cornerstone of precision medicine, offering targeted solutions with remarkable efficacy and fewer off-target effects than traditional treatments, such as chemotherapy and radiation. These biologic agents, such as trastuzumab (Targeting HER2), cetuximab (targeting EGFR), and rituximab (Targeting CD20), have revolutionized the treatment landscape for various malignancies, improving patient outcomes and extending survival (71).

1.1 Monoclonal Antibodies, Production and Application

Monoclonal antibodies are designed to recognize and bind to a specific epitope on a target antigen, typically a protein or receptor overexpressed on cancer cells. This specificity underpins their utility in targeting antigens such as HER2 in HER2-positive breast cancer (84), EGFR in colorectal and lung cancers (8), and PD-L1 in melanoma and non-small cell lung cancer (13). The specificity of mAbs enables precise disruption of tumor cell signaling pathways, inhibition of angiogenesis, and activation of immune-mediated cytotoxicity, making them powerful tools in the oncology arsenal. Their ability to engage the immune system while sparing healthy tissues highlights their therapeutic advantage over conventional treatments (30).

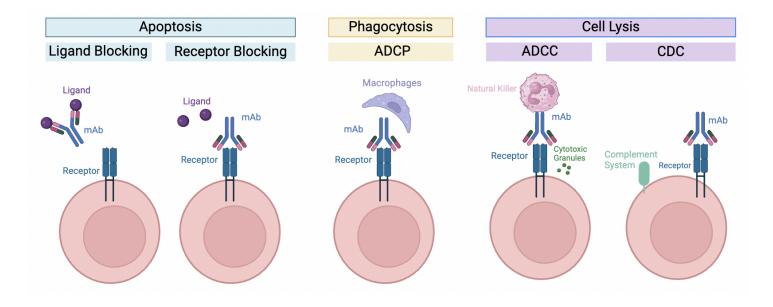


Figure 1: Mechanisms of Action of mAbs: Apoptosis, Phagocytosis, and Cell Lysis (30). This figure was created using BioRender.

Apoptosis - mAbs can stop cancer cells from receiving survival signals by blocking either the ligands (small molecules that activate receptors) or the receptors on the cancer cells themselves. Without these signals, the cancer cells undergo programmed death. Phagocytosis (Antibody-Dependent Cellular Phagocytosis) - mAbs attach to the surface of cancer cells, making it easier for immune cells, such as macrophages, to recognize, engulf, and destroy the cancer cells. Cell Lysis- mAbs break apart cancer cells in two ways. First is ADCC (Antibody-Dependent Cellular Cytotoxicity), in which mAbs coat the cancer cells, allowing natural killer (NK) cells to bind to them. NK cells then release toxic substances, such as perforin, which creates holes in the cancer cell membrane, and granzymes, which enter the cell and trigger its death. Second, CDC (Complement-Dependent Cytotoxicity) under this mAb activates the complement system, a chain reaction of proteins in the immune system. This leads to the formation of the membrane attack complex (MAC), which punches holes in the cancer cell's membrane, causing it to break apart. (81)

This paper explores the mechanisms of resistance to monoclonal antibody (mAb) therapies in cancer, with a focus on the molecular alterations within cancer cells, such as mutations in antigenic targets (e.g., HER2 or EGFR) and antigen downregulation, which reduce the binding efficacy of therapeutic antibodies. It also examines cellular adaptations, including the emergence of cancer stem cells (CSCs)—a subset of tumor cells capable of self-renewal and inherent resistance to therapy—and the upregulation of immune checkpoint proteins, such as PD-L1, which allow cancer cells to evade immune detection (13). Additionally, the paper investigates the tumor microenvironment (TME), a complex network of stromal cells, immune cells, and extracellular matrix components that supports tumor growth and creates physical and biochemical barriers to mAb penetration and efficacy. Key elements of the TME, such as hypoxia (low oxygen levels) and immunosuppressive cells like regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSCs), are discussed for their roles in therapeutic resistance.

By analyzing these factors, this study aims to gain a comprehensive understanding of the multifaceted challenges posed by resistance to mAb therapies (64, 13). It also proposes innovative strategies to overcome these barriers, including **bispecific antibodies**, which are engineered to target two different antigens simultaneously, thereby addressing antigen heterogeneity and improving therapeutic precision. Another approach involves **antibody-drug conjugates (ADCs)** (87, 11), which combine mAbs with potent cytotoxic agents, delivering these directly to tumor cells to minimize damage to healthy tissues. Additionally, **combination therapies** are highlighted, where mAbs are paired with other treatments to enhance efficacy. For example, trastuzumab (anti-HER2) (84) is combined with pembrolizumab (anti-PD-1) (80) to target HER2-positive cancer cells while also reactivating the immune system's T cells. These integrative strategies show potential to overcome resistance mechanisms and enhance the durability and long-term success of mAb-based cancer treatments. Through this integrative approach, this review aims to provide a comprehensive analysis of mAb therapies, exploring their mechanisms of action, production processes, and the challenges posed by resistance. By integrating recent advancements in antibody engineering and therapeutic innovation, this study aims to address gaps in understanding and contribute to the development of more effective and durable cancer treatments.

2 Materials and Methods

This review paper was developed through a comprehensive literature analysis to explore the resistance mechanisms to mAb therapies in cancer. A systematic search was conducted across scientific databases, including PubMed, ScienceDirect, and Google Scholar, using key terms such as "mAbs," "therapeutic resistance," "tumor microenvironment," "immune checkpoints," and "HER2 resistance." Peer-reviewed articles, clinical trial reports, and review papers published between 2000 and 2023 were included to ensure the relevance and timeliness of the information.

The collected literature was critically evaluated to identify key molecular, cellular, and tumor microenvironmental resistance mechanisms. Data on innovative therapeutic strategies, including bispecific antibodies, antibody-drug conjugates (ADCs), and combination therapies, were extracted and synthesized to propose solutions for overcoming resistance.

The paper emphasizes evidence-based findings and incorporates data from clinical trials and preclinical studies to maintain objectivity and reliability. Comparative analysis was employed to identify patterns and gaps in existing research. Visual aids, such as tables and diagrams, were developed to summarize complex concepts. Integrating diverse perspectives ensures a holistic understanding of therapeutic resistance, allowing this paper to make a meaningful contribution to ongoing research in cancer treatment.

3 Background

mAbs are highly effective in cancer treatment due to their ability to employ direct and immune-mediated mechanisms to combat tumor growth and survival. One primary mechanism is the **direct targeting of cancer**

cells, where mAbs bind specifically to receptors or antigens on the surface of tumor cells, disrupting critical pathways essential for their proliferation and survival. For instance, cetuximab, an anti-EGFR mAb, blocks the epidermal growth factor receptor (EGFR), thereby inhibiting downstream signaling through the RAS/RAF/MEK and PI3K/AKT pathways—pathways that are crucial for cell division and survival (62)

In addition to direct targeting, mAbs enhance the immune system's ability to eliminate cancer cells by activating the **immune system**. This occurs via **antibody-dependent cellular cytotoxicity (ADCC)** and **complement-dependent cytotoxicity (CDC)**. In ADCC, mAbs like rituximab, which target CD20 on B cells, recruit immune effector cells, such as natural killer (NK) cells and macrophages, to destroy the bound cancer cells (63). CDC involves activating the complement system, a part of the immune system that enhances the ability of antibodies to clear pathogens and damaged cells, further aiding in tumor destruction.

Another important mechanism is **checkpoint inhibition**, employed by a subclass of mAbs known as **immune checkpoint inhibitors**. These antibodies disrupt inhibitory signals that cancer cells use to escape detection by the immune system. For example, nivolumab, an anti-PD-1 antibody, and atezolizumab, an anti-PD-L1 antibody, block these inhibitory pathways, reactivating T-cells to recognize and attack cancer cells. By restoring T-cell activity, checkpoint inhibitors play a pivotal role in enhancing the body's natural anti-tumor immune responses (12).

Finally, mAbs can serve as delivery vehicles in the form of **antibody-drug conjugates (ADCs)**. ADCs are engineered by linking mAbs with potent cytotoxic agents, delivering these agents directly to cancer cells while sparing healthy tissues. A prime example is trastuzumab emtansine, which combines trastuzumab, an anti-HER2 antibody, with emtansine, a cytotoxic agent, to kill HER2-overexpressing cancer cells selectively (87). This targeted delivery minimizes systemic toxicity and enhances the precision of cancer therapy.

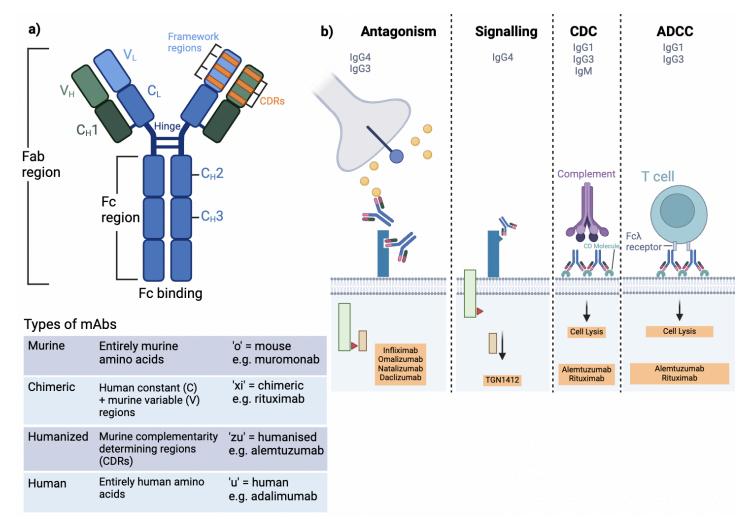


Figure 2: Development of mAbs: structure and function. Schematic structure of an immunoglobulin G (IgG) mAb (38). This figure was created using BioRender.

3.1 Mechanism of Resistance in mAb Therapies

The phenomenon of resistance to mAb therapies poses a significant challenge to their long-term efficacy in cancer treatment. Resistance mechanisms arise from intrinsic changes within tumor cells and extrinsic factors within the tumor microenvironment (TME). Understanding these mechanisms is crucial for improving the efficacy and durability of mAb-based treatments. Resistance, in this context, refers to the ability of cancer cells to evade or adapt to therapeutic agents, rendering the treatment less effective or ineffective over time (8). Studies have reported resistance in up to 30-50% of patients treated with trastuzumab for HER2-positive breast cancer and similar patterns in patients treated with rituximab for B-cell lymphomas (100). These cases highlight the urgent need to understand and address resistance to sustain the benefits of mAb therapies.

1. Antigen Modulation Healthy cell Cancer cell Antigen 4. Epigenetic changes DNA methylation Histone modifications • cytokine secretion- TGF-β and IL-10 • environment that hinders the immune system

Figure 3: Mechanisms of resistance to mAb. This figure was created using BioRender. The main resistance mechanisms to mAb cancer therapies include antigen modulation, target antigen mutations, tumor microenvironment factors, and epigenetic changes, such as DNA methylation and histone modifications.

The **tumor microenvironment (TME)** further amplifies resistance. The TME consists of non-cancerous cells, such as stromal and immune cells, the extracellular matrix (ECM), and signaling molecules that surround and support the tumor (40). **Physical barriers**, such as a dense extracellular matrix (ECM), hinder the penetration of therapeutic antibodies into the tumor core. **Immunosuppressive cells**, such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSCs), secrete factors that weaken the immune response, shielding the cancer cells. Additionally, **hypoxia**, or low oxygen levels within the tumor, promotes genetic instability and metabolic adaptations, enabling cancer cells to thrive despite therapy.

Table 2: Types of Resistance to Monoclonal Antibody Therapies in Cancer

Type of Resistance	Description and Mechanism	Examples	Result
Antigen Loss (3)	- Complete reduction or	HER-2 (Human	- Cancer cells become
	disappearance of the target	Epidermal Growth Factor	unrecognisable to the
	antigen on the surface of	Receptor 2) -loss in breast	immune system or mAb
	cancer cells (47)	cancer (69)	therapies because the

	- Downregulation, Genetic		target antigen is no longer
	mutations of the target,		present
	epigenetic changes, tumor		F
	heterogeneity, or antigen		
	shedding		
Antique	- Loss or modification of the	HED2 dayyanaaylatian in	Dadward off aggreet
Antigen		HER2 downregulation in	- Reduced efficacy of
Downregulation or	target antigen, preventing mAb	breast cancer, and EGFR	targeted mAbs like
Alteration (57)	binding.	mutations in lung cancer	trastuzumab (HER2) and
			cetuximab (EGFR).
			- Tumor cells evade
			immune recognition.
Genetic	DNA methylation and histone	Methylation of MGMT in	Loss of antigen
/ Epigenetic	modifications can alter the	glioblastoma	expression, resulting in
Modifications (77)	expression of genes involved		reduced binding of mAbs.
	in antigen presentation or		
	immune responses.		
Drug Efflux	- Overexpression of efflux	P-glycoprotein (MDR1)	- Decreased intracellular
Mechanisms (105)	transporters that actively pump	in ovarian and breast	drug concentration,
	therapeutic antibodies out of	cancer	reducing mAb
	cells.		effectiveness.
Fc-Mediated	- Tumors alter Fc receptor	Low FcγR expression in	- Impaired ADCC and
Resistance/Fc	expression to block ADCC,	lymphoma	reduced
Receptor	reducing immune system		macrophage-mediated
Downregulation (7)	activation.		tumor killing.
			- Rituximab loses its
			immune-stimulating
			effect.
	Cancer cells activate	PI3K/AKT/mTOR	- mAb therapy fails as
Activation of	compensatory signaling	activation in breast	tumors use alternative
Alternative	pathways, which bypass the	cancer, MAPK pathway	survival mechanisms.
Pathways Or Bypass	blockade by mAbs.	activation in colorectal	- Leads to persistent
Pathways (68)		cancer	tumor growth despite
			therapy.
	MET, IGF-1R activation	EGFR-mutant lung cancer	13
Upregulation of	- Tumor cells increase	PD-L1 overexpression in	- Prevents T-cell
- r 800000000000000000000000000000000			

Immune	checkpoint molecules, and	lung cancer and	activation and
Checkpoints	Upregulation of immune	melanoma	immune-mediated killing.
(Immune Evasion)/	checkpoint proteins suppresses		- Leads to resistance
Immune Checkpoint	immune response, leading to		against immune
Activation	mAb resistance. (79)		checkpoint inhibitors
			(anti-PD-1,
			anti-CTLA-4).
			- Reduces ADCC and
			overall immune-mediated
			tumor clearance. (14)
ADC Resistance	- Reduced internalization of	T-DM1 resistance in	- Failure to deliver
	ADCs or increased drug efflux	HER2-positive breast	cytotoxic payload to
	by P-gp. (105)	cancer	tumor cells.
			- Increased drug efflux
			pumps prevent
			intracellular accumulation
			of the toxic payload.
Tumor	- The environment	- Glioblastoma,	- Reduced effectiveness
Microenvironment(T	surrounding the tumor cells	pancreatic cancer	of mAbs that rely on
ME)-Mediated	(tumor microenvironment) can	- The dense stromal	immune effector
	become more resilient to	environment in pancreatic	mechanisms like ADCC
	therapies	tumors can create a	(antibody-dependent
	A supportive environment	physical barrier to drug	cellular cytotoxicity) and
	actively contributes to the	delivery and provide	CDC
	failure of mAb therapies.	survival signals to cancer	(complement-dependent
	Hypoxia, ECM barrier (40)	cells	cytotoxicity).

3.1.1 Tumor Cell-Intrinsic Mechanisms

(A) Antigen Loss or Alteration

The effectiveness of mAb therapies depends on the presence of specific antigens on tumor cells that serve as binding sites for antibodies. Resistance often arises due to the downregulation or complete loss of the target antigen. Tumor cells achieve this through genetic or epigenetic changes, rendering the mAb unable to bind effectively (92). For example, mutations in HER2 or EGFR alter the antigen's structure, reducing the binding affinity of mAbs like trastuzumab or cetuximab. These changes enable tumor cells to evade therapy and drive disease progression (47).

(B) Altered Signaling Pathways

Cancer treatment is further complicated by cancer stem cells (CSCs)—a rare subset of tumor cells with the unique ability to self-renew and resist conventional therapies. These cells often survive initial treatments, serving as a persistent reservoir for tumor regrowth and metastasis. Tumor cells also exploit immune regulatory pathways by upregulating immune checkpoint proteins such as PD-L1, which effectively suppress the immune system's ability to attack cancer cells (3). This immune evasion mechanism significantly reduces the efficacy of immune-modulating mAbs like nivolumab and pembrolizumab, which are designed to block PD-1/PD-L1 interactions and restore the immune system's anti-tumor activity.

In addition to immune suppression, tumor cells adapt to mAb therapies by activating alternative signaling pathways, a phenomenon known as cellular resistance. For example, when mAbs like cetuximab, which target the epidermal growth factor receptor (EGFR), block one signaling route, cancer cells often compensate by upregulating related pathways involving molecules such as HER3 or MET, ensuring continued growth and survival. Furthermore, mutations in downstream signaling molecules, such as KRAS or PI3K, can lead to the constant activation of oncogenic cascades (93). These mutations bypass the inhibitory effects of mAb therapies, rendering them less effective. Collectively, these adaptations allow tumor cells to evade therapeutic targeting and maintain their malignant behavior (52).

3.1.2 Checkpoint Inhibition and Immune Evasion

Immune checkpoint inhibitors, a subclass of mAbs, have revolutionized cancer therapy by counteracting the inhibitory signals that cancer cells exploit to evade immune detection. These therapies target checkpoint pathways, such as PD-1 (programmed cell death protein 1) and PD-L1 (programmed death ligand 1). Nivolumab and atezolizumab, for example, block these pathways, effectively reactivating T cells to recognize and attack cancer cells (35). However, despite their groundbreaking potential, these therapies face significant challenges due to the adaptive strategies that cancer cells use to evade immune responses.

Cancer cells overexpress checkpoint molecules, such as PD-L1, as a defense mechanism to suppress T-cell activity. This overexpression is often induced by inflammatory signals in the tumor microenvironment, particularly interferon-gamma (IFN-γ), which paradoxically boosts PD-L1 expression. This creates an "immune escape" loop where the immune system's attempts to attack the tumor inadvertently lead to increased immune suppression (79). The effectiveness of checkpoint inhibitors can also be diminished by the presence of other inhibitory molecules, such as CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), TIM-3 (T-cell immunoglobulin and mucin domain-containing 3), and LAG-3 (lymphocyte activation gene 3), which act as alternative pathways to block T-cell activation (14).

In clinical settings, the frequency of immune evasion mechanisms varies among patients and different types of cancer. For example, approximately 40-50% of patients with non-small cell lung cancer (NSCLC) exhibit high PD-L1 expression, which correlates with immune checkpoint resistance and poorer outcomes if not adequately targeted. In melanoma, up to 30-40% of patients develop resistance to PD-1/PD-L1 inhibitors within the first year of treatment. Moreover, a significant percentage of patients (ranging from 20-50% depending on the cancer type) experience either primary resistance, where the therapy fails to elicit an initial response, or acquired resistance, where tumors adapt over time to evade the immune system despite initial effectiveness (99).

The complexity of this immune suppression is further compounded by the tumor microenvironment, which actively promotes the recruitment of regulatory T cells (Tregs) and the expansion of myeloid-derived suppressor cells (MDSCs). These immune cells contribute to an immunosuppressive milieu by releasing cytokines such as IL-10 and TGF- β , which further inhibit T-cell functionality (41). This multifaceted suppression highlights the need for combination therapies that target multiple resistance pathways, such as pairing checkpoint inhibitors with agents that block other immunosuppressive signals or augmenting immune activation through cytokine therapy.

3.1.3 Reduced Effector Function

mAbs rely on immune-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) to destroy tumor cells. Resistance arises when tumor cells reduce Fc receptor expression on effector cells or impair complement activation, weakening ADCC and CDC. These often emerge due to the selective pressure exerted by mAb therapy. Tumors are genetically and phenotypically heterogeneous, and exposure to immune-mediated therapies can drive the survival of resistant subpopulations. For example, Chronic inflammation in the tumor microenvironment leads to epigenetic changes or mutations that suppress Fc receptor function or complement activation. Tumor cells may actively recruit immunosuppressive cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which secrete factors that impair ADCC and CDC (97).

3.1.4 Mechanisms of Reduced Effector Function

Decreased Fc Receptor Expression: Tumor cells can reduce the expression of Fc receptors on effector cells, such as natural killer (NK) cells and macrophages. This decrease in Fc receptor expression impairs the ability of effector cells to bind to the Fc region of mAbs, thereby reducing antibody-dependent cellular cytotoxicity (ADCC). Impaired Complement Activation: Tumor cells can also inhibit complement activation, which is essential for complement-dependent cytotoxicity (CDC). The complement system is a group of proteins that work together to help eliminate bodily pathogens (94). Impaired complement activation reduces the ability of mAbs to induce CDC.

Reduced effector function is a common mechanism of resistance to mAbs, occurring in approximately 20-30% of patients with cancer (1). However, the exact frequency and prevalence of reduced effector function vary depending on the type of cancer, the specific mAb used, and the patient population being studied. In patients with chronic lymphocytic leukemia (CLL), reduced effector function has been reported to occur in approximately 40% of patients treated with the mAb rituximab. In patients with non-Hodgkin lymphoma (NHL), reduced effector function has been reported to occur in approximately 25% of patients treated with the mAb rituximab (96).

3.2 Tumor Microenvironment-Related Mechanisms

3.2.1 Immune Suppression

The TME fosters resistance by creating an immunosuppressive environment. Tumors recruit regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which inhibit cytotoxic immune cells like T cells and NK cells. Furthermore, tumors secrete immunosuppressive cytokines such as TGF-β and IL-10, suppressing anti-tumor immune responses (23). Alongside these factors, the upregulation of immune checkpoints like PD-L1 ensures tumor survival and proliferation despite immune attacks.

3.2.2 Physical Barriers

The dense extracellular matrix (ECM) and stromal components within the TME act as physical barriers, limiting the ability of mAbs to reach their target antigens. For example, fibroblasts produce collagen, creating a protective shield around tumor cells (40). Additionally, tumors often develop regions of hypoxia, where low oxygen levels reduce mAb efficacy and induce adaptive changes in tumor cells, such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT)(24). These changes increase tumor cell resistance to therapy.

3.3 Drug Resistance Mechanisms

3.3.1 Drug Efflux and Uptake Challenges

Tumor cells employ multidrug resistance (MDR) proteins, such as P-glycoprotein (P-gp), to expel therapeutic agents, including mAbs, from their intracellular environment. This reduces their intracellular concentrations and efficacy. Additionally, impaired drug uptake due to decreased functionality of transport proteins further limits mAb effectiveness (19). These mechanisms ensure tumor cells remain unaffected despite therapeutic interventions.

3.3.2 Antibody-Drug Conjugates (ADCs)

Antibody-drug conjugates (ADCs) are engineered to overcome traditional resistance mechanisms. ADCs couple mAbs with potent cytotoxic agents, allowing targeted delivery of drugs directly to tumor cells while sparing normal tissues. For instance, trastuzumab emtansine (T-DM1) combines trastuzumab, an anti-HER2 mAb, with the cytotoxic agent emtansine. This dual-action approach enables ADCs to bypass challenges such as antigen loss by delivering their toxic payload regardless of reduced mAb efficacy (105). ADCs also help overcome physical barriers in the TME by precisely targeting cancer cells and ensuring drug delivery even in resistant environments (15).

4 Discussion

Specific resistance mechanisms

4.1 Altered Receptor Signaling: Overexpression, Phosphorylation, and Variant Forms

A major mechanism of resistance to monoclonal antibody (mAb) therapies involves alterations in receptor tyrosine kinases (RTKs), which are key regulators of cell growth, survival, and differentiation. These alterations may occur via overexpression and aberrant phosphorylation of alternative RTKs or through the production of structurally altered receptor variants.

In some tumors, alternative RTKs such as MET (hepatocyte growth factor receptor), IGF-1R (insulin-like growth factor receptor 1), and ERBB3 (a member of the HER/EGFR family) are overexpressed. These receptors compensate for the blockade of primary targets by continuing to activate downstream pathways such as PI3K/AKT and MAPK, which support proliferation and inhibit apoptosis (60). For instance, when cetuximab targets EGFR, tumor cells may activate MET or ERBB3 to bypass the inhibited pathway. Aberrant phosphorylation—addition of phosphate groups in the absence of normal activating signals—can further stabilize these alternative receptors in their active conformations, contributing to sustained oncogenic signaling (70).

In parallel, cancer cells may produce receptor variants that are inherently resistant to mAb binding. A well-characterized example is EGFRvIII, a truncated mutant of EGFR that lacks the extracellular ligand-binding domain. EGFRvIII is constitutively active and evades inhibition by cetuximab, as the therapeutic antibody can no longer bind its target (45). This variant is commonly found in glioblastoma and other aggressive cancers and enhances downstream signaling even in the absence of ligand stimulation. These mutant forms not only evade therapeutic binding but also amplify oncogenic signaling, promoting tumor aggressiveness and treatment failure (4).

Given the role of both overexpressed alternative receptors and structurally modified variants in driving resistance, there is a need to develop therapeutics that can overcome these adaptations. Promising approaches include bispecific antibodies that simultaneously target the canonical receptor and its variant or alternative, as well as small-molecule inhibitors that bind intracellular kinase domains independent of extracellular alterations.

4.2 Increased Expression of the Target Receptor

Another common resistance mechanism is the overexpression of target receptors such as EGFR or HER2. These receptors are usually regulated by degradation pathways that remove excess proteins from the cell surface. However, in resistant cancer cells, these degradation pathways can become defective, leading to an accumulation of receptors on the cell surface (64). This overexpression saturates mAb therapies like trastuzumab (HER2-targeting) or cetuximab (EGFR-targeting), reducing effectiveness.

For instance, in HER2-positive breast cancer, the overexpression of HER2 may exceed the binding capacity of trastuzumab, allowing unbound receptors to continue driving cancer cell proliferation (84). Similarly, increased EGFR expression due to defective degradation can diminish cetuximab's ability to inhibit signaling pathways effectively.

4.3 Impact on Therapeutic Outcomes

Protein modifications and receptor variants complicate cancer treatment by creating redundancies in signaling pathways and evading targeted therapies. These mechanisms reduce the efficacy of existing mAbs and contribute to disease progression and poorer patient outcomes (86). Cancer cells' adaptability underscores the importance of developing novel strategies, such as combination therapies that target multiple RTKs simultaneously or next-generation mAbs designed to recognize and neutralize mutant variants.

4.4 Alternative Pathway Activation

Cancer cells often activate alternative signaling pathways to bypass the blocked pathways targeted by mAb therapies. These bypass mechanisms ensure tumor cells' continued proliferation, survival, and resistance. One prominent example is the activation of the Src kinase pathway. Src, a non-receptor tyrosine kinase, can bypass the epidermal growth factor receptor (EGFR) inhibition by activating downstream signaling cascades, including the PI3K/AKT and MAPK/ERK pathways. These cascades promote cellular proliferation and survival, thereby diminishing the effectiveness of EGFR-targeted therapies such as cetuximab and panitumumab (111).

Similarly, tumors overexpressing transforming growth factor-alpha ($TGF\alpha$) can maintain EGFR activity independent of ligand binding, contributing to resistance against EGFR-targeted therapies. This overexpression bypasses the blockade of EGFR but also amplifies tumor growth and survival signals.

Cancer cells often overexpress alternative pro-angiogenic factors in anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF), such as bevacizumab (5). Fibroblast growth factor (FGF) and placental growth factor (PGF) are commonly upregulated in resistant tumors, sustaining angiogenesis despite VEGF inhibition. These factors activate alternative receptors, such as FGFR and VEGFR-1, ensuring the cancer receives an adequate blood supply for growth and survival (Fischer et al., 2010). This redundancy in angiogenic signaling pathways is particularly challenging, as it allows tumors to adapt dynamically to therapy (56).

4.5 Steric Hindrance by Other Cell Surface Proteins

Steric hindrance is a significant physical resistance mechanism wherein other cell surface proteins mask the target receptors, preventing the effective binding of mAbs. For instance, the protein MUC4, a membrane-associated mucin, is known to obscure the HER2 receptor on the surface of cancer cells. HER2 is a critical target in HER2-positive breast cancers, and its masking by MUC4 significantly reduces the ability of trastuzumab to bind effectively to its target. MUC4 physically hinders trastuzumab binding and interferes with receptor internalization and degradation, thereby sustaining HER2-mediated signaling. This resistance mechanism highlights the role of cell surface glycoproteins in modifying the accessibility of therapeutic targets. Studies have shown that silencing MUC4 expression can restore trastuzumab sensitivity in resistant cancer cells, emphasizing the potential of targeting such masking proteins to enhance mAb efficacy (37).

Additionally, steric hindrance is not limited to HER2-targeting therapies. Other examples include masking EGFR by overexpressed mucins or extracellular matrix proteins, which create a physical barrier that impedes antibody binding. The dense stromal environment often present in solid tumors can exacerbate these barriers, reducing therapeutic effectiveness (43).

4.6 Secretion of Alternative Ligands

Resistance to mAbs can also arise through the secretion of alternative ligands that bypass the inhibition of targeted pathways. In tumors treated with anti-angiogenic therapies like bevacizumab, cancer cells often increase the secretion of essential fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and platelet-derived growth factor (PDGF). These angiogenic factors stimulate alternative signaling pathways that promote the formation of new blood vessels, ensuring that the tumor receives nutrients and oxygen despite VEGF blockade (36).

This mechanism is particularly problematic in tumors with high signaling plasticity, where multiple angiogenic factors can redundantly drive vascular growth. For example, HGF activates the MET receptor, which promotes angiogenesis and enhances tumor cell motility and invasion, further complicating treatment outcomes.

In addition to pro-angiogenic ligands, tumors may secrete ligands that activate alternative signaling receptors in the same family as the target receptor. For instance, in EGFR-resistant tumors, overexpression of ligands such as amphiregulin or epiregulin can activate other HER family receptors, such as HER3, bypassing EGFR inhibition and maintaining downstream signaling pathways essential for tumor survival.

4.7 Drug Influx/Efflux Mechanisms

One of the critical challenges in cancer therapy is the efficient delivery of therapeutic agents to tumor cells. Resistance mechanisms associated with drug influx (entry) and efflux (exit) have emerged as significant barriers, particularly for therapies involving mAbs and small-molecule inhibitors. These mechanisms reduce

the intracellular concentration of therapeutic agents, compromising their efficacy and allowing cancer cells to survive and proliferate (20). Two key components of these resistance mechanisms are multidrug resistance proteins (MDR) and the structural challenges of irregular tumor vasculature.

4.7.1 Multidrug Resistance Proteins (MDR)

MDR proteins are specialized transmembrane pumps that actively transport drugs out of cells, often against concentration gradients. These proteins belong to the ATP-binding cassette (ABC) transporter family, which uses the energy from ATP hydrolysis to drive the efflux of various substrates, including therapeutic agents. A prominent example is P-glycoprotein (P-gp)(106), also known as ABCB1, which has been extensively studied for its role in mediating drug resistance.

P-gp and other MDR proteins recognize and expel various chemotherapeutic drugs, small-molecule inhibitors, and even some mAbs, reducing their intracellular accumulation and effectiveness. For example, P-gp has been implicated in resistance to tyrosine kinase inhibitors (TKIs) like gefitinib and lapatinib, which are used to target EGFR and HER2, respectively. By expelling these inhibitors, P-gp decreases its ability to inhibit its targets effectively, allowing cancer cells to bypass therapeutic blockades.

The activity of MDR proteins is particularly challenging in tumors with high genomic instability, as these tumors often overexpress efflux pumps. This overexpression can be intrinsic (present before treatment) or acquired (developed during therapy). For instance, overexpression of P-gp in resistant cancer cells has been observed to correlate with a decrease in intracellular concentrations of drugs like imatinib, a TKI used to treat chronic myeloid leukemia (CML)(21). Studies have shown that blocking P-gp activity using inhibitors or RNA interference can restore drug sensitivity, highlighting the potential of targeting efflux pumps to overcome resistance.

4.7.2 Irregular Tumor Vasculature

The irregular structure and poor permeability of tumor vasculature pose significant challenges for drug delivery, particularly for large molecules like mAbs. Unlike normal blood vessels, tumor vessels are often disorganized, leaky, and poorly perfused, leading to uneven drug distribution within the tumor microenvironment. This phenomenon, the enhanced permeability and retention (EPR) effect, can paradoxically result in inadequate drug penetration in some tumor regions.

Tumor vasculature also exhibits high interstitial fluid pressure (IFP) due to the lack of proper lymphatic drainage. This elevated pressure creates a barrier to the passive diffusion of drugs from blood vessels into tumor tissues. For mAbs, which rely on systemic circulation to reach their targets, poor vascularization and high IFP significantly reduce their ability to penetrate deep into the tumor core, leaving regions of the tumor untreated. These untreated areas, often referred to as hypoxic zones, can foster the survival of therapy-resistant cancer cells and promote tumor relapse.

4.7.3 Combined Impact and Therapeutic Implications

The interplay between MDR proteins and irregular tumor vasculature creates a formidable barrier to effective drug delivery. Efflux pumps actively expel therapeutic agents from cells, while poor vascularization limits their ability even to reach the target cells in the first place. Together, these mechanisms reduce drug efficacy and create selective pressure that favors the survival of resistant cancer cell populations. To address these challenges, several strategies are being explored:

Efflux Pump Inhibitors: To restore intracellular drug concentrations, compounds that inhibit MDR proteins, such as verapamil and tariquidar, are being investigated. These inhibitors block the activity of efflux pumps like P-gp, allowing therapeutic agents to accumulate within cancer cells.

Nanoparticle-Based Drug Delivery: Nanoparticles and liposomes can encapsulate therapeutic agents, protecting them from efflux pumps and enhancing their penetration into tumors. For example, liposomal formulations of doxorubicin have shown improved distribution in tumors with irregular vasculature.

Vascular Normalization: Strategies to normalize tumor vasculature, such as using anti-angiogenic agents, aim to improve blood flow and reduce IFP. By creating a more organized vascular network, these approaches enhance the delivery and distribution of therapeutic agents.

Combination Therapies: Combining MDR inhibitors with drugs that target the tumor microenvironment, such as anti-hypoxia agents, can simultaneously address efflux-mediated resistance and poor drug delivery (46).

4.8 Genomic Alterations and Mutations

Genomic alterations and mutations are a cornerstone of resistance mechanisms to mAb therapies. They enable cancer cells to evade targeted treatments. These mutations can be broadly categorized into **pre-existing** and **emergent**, each playing a distinct role in therapeutic resistance.

Pre-existing Mutations- Pre-existing mutations, or primary resistance mechanisms, are inherent genetic changes within a subpopulation of tumor cells present before treatment. These mutations confer a survival advantage under the selective pressure of mAb therapies, allowing resistant cancer cells to proliferate while sensitive cells are eliminated. For instance, mutations in the KRAS gene—a critical mediator of downstream signaling from the epidermal growth factor receptor (EGFR)—have been linked to resistance against EGFR-targeting antibodies such as cetuximab and panitumumab in colorectal cancer. Similarly, mutations in PIK3CA, which encodes a subunit of the PI3K enzyme, or BRAF, a serine/threonine kinase, disrupt the efficacy of targeted therapies by constitutively activating growth and survival pathways even in the presence of inhibitors (107).

Emergent Mutations- Emergent or secondary resistance mutations arise after therapy initiation, typically due to the selective pressure exerted by the treatment. These mutations do not abolish the

receptor's functionality but instead modify the structure of the drug-binding domain, reducing the binding affinity of mAbs while preserving the receptor's ability to signal. A classic example is the EGFR T790M mutation, observed in non-small cell lung cancer (NSCLC) patients treated with EGFR inhibitors. This mutation increases the receptor's affinity for ATP, reduces interaction with inhibitors, and allows signaling to continue unabated. Similarly, in chronic myeloid leukemia (CML), secondary mutations in the BCR-ABL fusion gene, such as the T315I mutation, alter the kinase domain to evade inhibition by drugs like imatinib (58). These mutations highlight the dynamic nature of cancer resistance, requiring constant innovation in therapeutic design.

4.9 Gene Amplification and Overexpression

Gene amplification and overexpression of critical oncogenes and receptors represent another pivotal mechanism by which tumors develop resistance to mAb therapies. Amplification refers to the increase in gene copies within the genome, leading to the overproduction of the corresponding protein.

Gene Amplification of RTKs- One of the most well-characterized examples of resistance through gene amplification involves receptor tyrosine kinases (RTKs) like MET and EGFR. In EGFR-mutant NSCLC, tumors amplify the MET gene to compensate for EGFR inhibition. MET amplification activates downstream pathways such as the PI3K/AKT and MAPK signaling cascades, bypassing the blockade of EGFR by mAbs or tyrosine kinase inhibitors (TKIs). This phenomenon has been observed in patients who initially respond to EGFR-targeting therapies but later relapse due to the emergence of MET-driven signaling (66). Amplified EGFR itself can also overwhelm mAb therapies, as higher receptor densities on the tumor cell surface reduce the efficacy of receptor blockade.

Amplification of Downstream Effectors- In some cases, tumors amplify genes encoding downstream signaling molecules to sustain survival and proliferation despite upstream inhibition. For instance, amplifying PIK3CA or AKT1, both integral components of pathways, allows component tumors to bypass receptor inhibition and continue transmitting growth signals. Similarly, amplification of KRAS enables persistent activation of the MAPK pathway, diminishing the impact of upstream therapies targeting EGFR or HER2 (58).

Clinical Implications and Strategies The amplification of these genes contributes to resistance and complicates treatment strategies. It often necessitates combination therapies, such as dual inhibition of the amplified pathway and its compensatory signaling routes. Targeting MET amplification, for example, has shown promise with MET inhibitors used in conjunction with EGFR-targeting agents in NSCLC. Additionally, emerging approaches like genomic profiling enable the identification of amplified genes, allowing personalized treatments that preemptively address resistance mechanisms.

4.10 KEGG Pathways with Resistance Mechanisms

Recent insights from KEGG pathway analyses and integrated transcriptomic datasets have enabled the classification of tumors by resistance phenotypes, suggesting tailored mAb and immunotherapy strategies. The following table summarizes key resistance traits, associated tumor types, and which mAb strategies they are likely to respond to or not respond to.

Table 2: Tumor Resistance Characteristics and Therapeutic mAb Suitability

Tumor resistance	Tumors	May Respond to	May not respond to
characteristics			
Large number of mutations	melanoma, lung, colon	Immunotherapy, mAB	
Low number of mutations	prostate, thyroid,		Immunotherapy, mAB
	glioblastoma?		
Downregulate TAA, 'cold	HNSCC, lung, colorectal,	Multispecific antibodies	
tumors'	bladder, laryngeal, breast		
Downregulate P-gp	Breast, colorectal, prostate,	Antibody-drug conjugates	
expression	schwannoma	(ADC)	
	AML, pancreatic, prostate,		Checkpoint inhibitors,
	glioblastoma, 'cold tumors'		Bispecific antibodies
			(BiSE) or bispecific
			T-Cell engagers
			(BiTE)
OXPHOS defects	Near universal	Antibodies targeting	
		glucose transporters	
Tumor heterogeneity, dense	Solid tumors	Antibody-drug conjugates,	Immunotherapy, mAB
surrounding tissue,		Dual payload ADC,	
immunosuppressive		Radioimmunotherapy	
microenvironment			
Altered lipid metabolism	Stomach	Antibodies targeting	
		CD36, FASN, ACC, ACLY	
		or SREBP	
Altered amino acid	Breast, Kidney	Antibodies targeting	
metabolism		SLC7A5, SLC6A14,	
		BCAT1, SLC1A5	
Specific target antigens	Melanoma, Neuroblastoma,	Immunocytokines	
	Colon, Lymphoma		
Heterogeneous tumors and	ALL, follicular lymphoma,	Multispecific antibodies	
'hot' tumors	Multiple myeloma		

> 2-fold DEG upregulated	Kidney, Pancreatic	Antibody-oligonucleotide	
		conjugate (AOC) or	
		Antibody-miRNA	
		conjugate	
Dense surrounding tissue	NSCLC, Melanoma, Solid	Radioimmunotherapy	
	tumors	(Antibody-radioactive-drug	
		-conjugates) due to	
		abscopal effect	
Downregulate Antibody	Not yet investigated	Glycoengineered	First gen mAB
dependent cellular toxicity		antibodies (eg.	
(ADCC)		afucosylated)	

This table synthesizes tumor resistance traits with associated KEGG pathway data and therapeutic implications. For instance, tumors with high mutational burden like melanoma and NSCLC activate robust neoantigen presentation, favoring checkpoint inhibitors and first-line mAbs (29). In contrast, glioblastomas and prostate cancers with lower mutation rates may resist standard mAb-based immunotherapy due to limited antigenicity.

Downregulation of tumor-associated antigens (TAAs) or antigen processing components in "cold" tumors like bladder or breast cancer limits response to standard mAbs. Multispecific antibodies or BiTEs may overcome this by bridging tumor antigens with effector T cells (112).

OXPHOS defects, a nearly universal feature in solid tumors, rewire metabolism toward glycolysis. In such cases, targeting glucose transporters like GLUT1 with antibody-drug strategies has shown promise (22). Similarly, tumors with dense stroma or high interstitial pressure benefit more from radioimmunotherapy or ADCs due to their superior tissue penetration and localized cytotoxicity.

KEGG enrichment of amino acid metabolism pathways (e.g., glutamine, leucine) in breast and renal cancers aligns with overexpression of transporters like SLC1A5 and SLC6A14, now explored as antibody targets (51).

Lastly, emerging work in glycoengineering (e.g., afucosylated antibodies) offers solutions for tumors that suppress ADCC. These engineered antibodies show enhanced binding to Fcy receptors on NK cells (73).

5 Addressing the Impact of Resistance and Innovations in mAb Therapy

The impact of resistance to mAb therapies is profound, spanning clinical, economic, and scientific dimensions. Clinically, resistance results in disease progression, reduced survival rates, and limited patient treatment options. Economically, it escalates healthcare costs through the necessity for additional therapies, frequent diagnostic tests, and prolonged hospitalizations. Scientifically, it highlights the limitations of existing treatments and emphasizes the urgent need for continuous innovation in therapeutic development. Addressing these resistance mechanisms is critical for enhancing the durability and efficacy of mAb therapies and

improving patient outcomes. Advanced antibody engineering offers promising solutions to these challenges, including bispecific antibodies such as blinatumomab and next-generation antibody-drug conjugates (ADCs) (67). Additionally, personalized medicine approaches, underpinned by genomic and proteomic profiling, pave the way for tailored treatment plans that address individual tumor characteristics.

Innovations in mAb design are central to overcoming resistance. Next-generation mAbs, such as bispecific antibodies, are engineered to simultaneously target multiple antigens, effectively addressing antigen heterogeneity and loss issues. For example, trastuzumab deruxtecan, an advanced ADC, combines the targeting precision of trastuzumab with a potent cytotoxic agent to bypass resistance mechanisms caused by HER2 mutations. ADCs also circumvent physical barriers within the tumor microenvironment (TME) by directly delivering cytotoxic payloads to cancer cells, irrespective of antigen density or accessibility. Personalized medicine further enhances these innovations by tailoring treatments to specific molecular and cellular resistance mechanisms identified through genomic sequencing and proteomic profiling (11). In HER2-positive breast cancer, for instance, identifying mutations conferring resistance enables the strategic use of therapies like trastuzumab emtansine or bispecific antibodies to target resistant tumors effectively.

These advancements underscore the necessity of integrating molecular insights into clinical practice.

Researchers and clinicians can refine therapeutic strategies by addressing key resistance mechanisms, such as the overexpression of alternative receptors, genomic alterations, immune evasion, and drug delivery challenges.

6 Limitations in mAb Research and Review

Despite their transformative impact in oncology, mAb therapies face significant limitations, particularly the development of resistance, which undermines their long-term efficacy. While mAbs offer advantages such as high specificity, immune system engagement, and reduced off-target effects compared to conventional therapies, approximately 30–50% of patients eventually develop resistance through mechanisms like antigen loss, signaling pathway bypass, or immune evasion (64, 13). Additionally, challenges such as high production costs, variable patient responses, and tumor microenvironment adaptations further limit their clinical utility (8, 11). A critical analysis of these limitations, supported by recent evidence, is essential to advance more durable and accessible mAb-based treatments.

6.1 Overemphasis on Clinical Successes and Underrepresentation of Real-World Data

Clinical trials for mAbs often showcase high efficacy rates under controlled conditions. For instance, trastuzumab has demonstrated significant survival benefits in HER2-positive breast cancer patients, with a 37% reduction in mortality when combined with chemotherapy (42). However, real-world data suggest that patients with advanced-stage disease, comorbidities, or treatment histories often experience diminished benefits. A study analyzing outcomes in community oncology practices revealed that up to 20% of HER2-positive patients did not respond to trastuzumab due to disease heterogeneity and acquired resistance (49). These discrepancies highlight the need for broader studies that reflect diverse patient populations.

6.2 Fragmented Understanding of Resistance Mechanisms

Resistance to mAb therapies arises from complex and overlapping mechanisms. Antigen loss, for example, was identified in colorectal cancer patients treated with cetuximab, where mutations in the EGFR extracellular domain (e.g., S492R mutation) rendered the therapy ineffective (17). Similarly, tumors adapt by activating compensatory pathways. MET amplification in EGFR-mutated non-small cell lung cancer was shown to bypass EGFR inhibition by erlotinib, a phenomenon likely relevant to mAb resistance. However, most studies explore these resistance mechanisms in isolation. A lack of integrative approaches fails to address the dynamic and multifactorial nature of resistance observed in clinical settings.

6.3 Limitations of Preclinical Models

While preclinical studies using animal models provide foundational insights, their translational value remains limited. For instance, genetically engineered mouse models used to evaluate PD-1/PD-L1 inhibitors failed to replicate the complex tumor microenvironment (TME) of human cancers. The failure of agents like bevacizumab to show survival benefits in ovarian cancer, despite promising preclinical results, underscores this limitation (26). Furthermore, ethical and logistical challenges prevent longitudinal human studies that could reveal chronic resistance mechanisms or cumulative toxicity.

6.4 Economic and Logistical Barriers

The high cost of mAb development limits the exploration of diverse therapeutic targets (72). Commercial interests further skew research priorities, as high-value targets like HER2 and PD-L1 receive disproportionate attention, leaving rare cancers or less lucrative targets underexplored. Additionally, negative trial results, such as the failure of ipilimumab in glioblastoma (27), often go unpublished, contributing to publication bias and an incomplete understanding of mAb limitations.

6.5 Inconsistencies in Data Reporting and Analysis

Systematic reviews and meta-analyses often struggle with heterogeneity in study designs. For example, response rates, progression-free survival (PFS), and overall survival (OS) metrics vary significantly across studies evaluating rituximab in lymphoma due to differences in patient populations (e.g., age, disease stage), treatment protocols (e.g., dosing schedules, combination therapies), and endpoint definitions, making robust comparisons challenging (18). Furthermore, the proprietary nature of many mAb platforms restricts access to raw data, hindering independent verification and broader collaboration.

6.6 Emerging Technologies with Untested Challenges

Next-generation mAbs, such as bispecific antibodies and antibody-drug conjugates (ADCs), offer innovative solutions but face significant challenges. Bispecific antibodies like blinatumomab (targeting CD19 and CD3) have shown promise in acute lymphoblastic leukemia but exhibit high rates of neurotoxicity and immune-related adverse effects (103). Similarly, ADCs like trastuzumab deruxtecan address HER2 resistance but present risks of interstitial lung disease. These issues highlight the need for more rigorous preclinical and clinical evaluations to balance innovation with safety.

6.7 Recommendations for Addressing Limitations

A multifaceted approach is essential to bridging these gaps. Expanding patient representation in clinical trials can enhance the generalizability of results, as demonstrated by efforts to include racially and ethnically diverse populations in PD-L1 inhibitor studies (50). Integrative research on resistance mechanisms, combining genomic, proteomic, and metabolomic profiling, can provide a more comprehensive understanding.

Open-access initiatives, such as the Cancer Moonshot Data Initiative, facilitate collaboration and transparency and address the data-sharing challenges that hinder progress.

Table 3: Comparative table of resistance mechanisms across different cancer types

Cancer Type	Common Resistance	Examples of	Impact on	Potential Solutions
	Mechanisms	Resistance	Therapy	
HER2-Positive	- Antigen	- HER2	- Reduced	- Bispecific
Breast Cancer	loss/downregulation (100,	downregulation	efficacy of	antibodies (targeting
	64)	leading to	trastuzumab,	HER2 and PD-1)
	- Activation of bypass	trastuzumab	pertuzumab, and	- PI3K inhibitors
	pathways	resistance	T-DM1	(e.g., alpelisib) (23,
	(PI3K/AKT/mTOR) (64,	- PI3K/AKT	- Tumor evades	103)
	5)	mutations allow	immune response	- Antibody-drug
	- Immune evasion	escape from		conjugates (ADCs)
	(upregulation of PD-L1)	HER2 inhibition		(e.g., trastuzumab
	(13, 14)			deruxtecan) (87, 11)
Non-Small Cell	- EGFR mutations &	- EGFR T790M	- Resistance to	- Third-generation
Lung Cancer	bypass signaling (MET,	mutation leads to	anti-EGFR	TKIs (osimertinib
(NSCLC)	ALK, KRAS activation)	cetuximab	therapies	for T790M
	(8, 66)	resistance	(cetuximab,	mutation)
	- Upregulation of immune	- MET	osimertinib)	- Bispecific T-cell
	checkpoints (PD-L1	amplification	- Immune	engaging antibodies
	overexpression) (13, 80)	bypasses EGFR	checkpoint	(EGFR/MET dual
		inhibition	inhibitors (ICIs)	inhibitors)
			fail due to	
			immune evasion	

- 4				
Colorectal	- EGFR downregulation	- KRAS/NRAS	- Anti-EGFR	- KRAS inhibitors
Cancer (CRC)	& RAS mutations (8)	mutations cause	therapy	(sotorasib for G12C
	- Alternative pathways	resistance to	(cetuximab,	mutation)
	(MAPK, Wnt/β-catenin	cetuximab and	panitumumab)	- MEK inhibitors
	activation) (6)	panitumumab	becomes	(for MAPK pathway
		- Wnt signaling	ineffective	activation)
		promotes immune		- Immune
		evasion		checkpoint
				inhibitors for MSI-H
				tumors
Hematologic	- Antigen escape (CD20	- Rituximab	- Loss of mAb	- CD19/CD20
Cancers (B-cell	downregulation in	resistance in	binding targets	bispecific antibodies
lymphomas,	lymphoma) (78)	CD20-negative	- Chemoresistance	(e.g.,
Leukemias)	- Overexpression of drug	B-cell lymphoma	due to drug efflux	blinatumomab)
	efflux pumps (P-gp in	- P-gp		- Combining ADCs
	leukemias) (15, 106)	overexpression		with efflux pump
		leading to ADC		inhibitors
		resistance		
		(brentuximab		
		vedotin)		
Glioblastoma	- Tumor	- Dense ECM	- mAbs fail to	- CAR-T therapy
(Brain Tumors)	microenvironment	prevents mAb	reach the tumor	(BBB-penetrating
	(hypoxia, ECM barriers)	penetration	site	CAR-Ts)
	(40)	- PD-L1	- Resistance to	- Matrix-degrading
	- Immune suppression	overexpression	anti-PD-1 therapy	enzymes for ECM
	(Tregs, MDSCs) (19, 20)	suppresses the	(nivolumab)	remodeling
		immune response		

7 Future Directions and Strategies to Overcome Resistance

The growing challenge of resistance to mAb therapies has prompted the exploration of innovative strategies to enhance their efficacy and durability. These approaches leverage advancements in combination treatments, next-generation mAbs, and precision medicine to address specific resistance mechanisms. They include cutting-edge technologies like bispecific antibodies, antibody-drug conjugates (ADCs), and the integration of artificial intelligence (AI) into drug discovery and personalized treatment planning (31). Below is an in-depth exploration of these strategies:

7.1 Combination Therapies

Combination therapies use mAbs alongside other treatments, such as chemotherapy, immune checkpoint

inhibitors, or small-molecule inhibitors, to achieve synergistic effects. These combinations reduce the likelihood of resistance development by simultaneously targeting multiple pathways or mechanisms. For instance, in HER2-positive breast cancer, trastuzumab is often combined with pertuzumab, another HER2-targeting antibody, to block different domains of the receptor (25). Clinical trials demonstrated that this combination improved progression-free survival by 6.1 months compared to trastuzumab alone (9). Similarly, mAbs like cetuximab (anti-EGFR) are paired with chemotherapy for colorectal cancer to enhance tumor regression rates. These combinations are particularly effective in tumors exhibiting pathway redundancy or compensatory signaling.

7.2 Bispecific Antibodies and Their Therapeutic Potential

Bispecific antibodies (BsAbs) are a groundbreaking advancement in cancer immunotherapy, engineered to simultaneously bind two distinct targets, thereby enhancing treatment specificity and efficacy. One prominent example is blinatumomab, a bispecific T-cell engager (BiTE) that bridges CD19 on B-cell malignancies and CD3 on T-cells, promoting immune-mediated tumor killing. Clinical trials have demonstrated its remarkable efficacy, achieving a complete remission rate of 43% in patients with relapsed or refractory acute lymphoblastic leukemia (ALL) (104). Beyond BiTEs, bulbs are being developed to target complex resistance mechanisms. For instance, bulbs designed to bind HER2 and PD-L1 simultaneously inhibit tumor growth signals and counteract immune evasion, offering a dual approach to overcoming therapeutic resistance. By addressing multiple resistance pathways and engaging the immune system more effectively, bispecific antibodies hold immense potential as versatile tools for treating heterogeneous and resistant tumors.

7.3 Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs), such as anti-PD-1 (nivolumab) and anti-PD-L1 (atezolizumab) antibodies, restore the immune system's ability to attack cancer cells. These inhibitors block inhibitory signals like PD-1/PD-L1, which cancer cells exploit to evade immune detection. In non-small cell lung cancer (NSCLC), nivolumab significantly improved overall survival, with a 41% reduction in mortality compared to chemotherapy (89). Combining ICIs with mAbs targeting tumor-specific antigens amplifies immune responses and reduces resistance by targeting intrinsic and extrinsic mechanisms.

7.4 Advancements in ADCs

Antibody-drug conjugates (ADCs) represent a novel therapeutic approach that combines the specificity of mAbs with the cytotoxic potency of chemotherapeutic agents. ADCs like trastuzumab deruxtecan and sacituzumab govitecan have shown promise in overcoming resistance in cancers such as HER2-positive breast cancer and triple-negative breast cancer (108). By selectively delivering cytotoxic payloads to cancer cells, ADCs minimize off-target effects, addressing systemic toxicity observed in traditional chemotherapy. For example, trastuzumab deruxtecan demonstrated a 61% objective response rate in HER2-positive breast cancer patients previously resistant to trastuzumab (88). This underscores the ability of ADCs to overcome resistance caused by antigen downregulation or genetic mutations.

7.5 Targeting Emerging Resistance Mechanisms

Research into the molecular underpinnings of resistance has revealed novel pathways that tumors exploit to evade mAb therapies. For instance, mutations in the HER2 gene can alter the receptor's conformation, diminishing the efficacy of HER2-targeted therapies like trastuzumab. Similarly, tumors frequently activate bypass pathways involving RTKs such as MET or AXL to maintain oncogenic signaling in the presence of mAb inhibition (76). Next-generation mAbs are being designed to target multiple pathways simultaneously, reducing the likelihood of resistance emergence (98).

7.6 Nanoparticle Delivery Systems

Nanoparticles offer an innovative solution to drug delivery challenges in the tumor microenvironment (TME), which often limits the efficacy of mAb therapies. These nanocarriers encapsulate mAbs and deliver them directly to tumors, bypassing barriers such as dense stroma, high interstitial fluid pressure, and irregular vasculature. For instance, liposomal nanoparticles loaded with trastuzumab have shown improved penetration into HER2-positive breast cancer tissues, enhancing therapeutic outcomes (6). Nanoparticles can also be designed to respond to specific triggers in the TME, such as acidic pH or enzymes, releasing their payload only in the tumor site. Additionally, nanoparticle delivery systems can co-encapsulate mAbs with other drugs, such as chemotherapeutic agents or immune modulators, enabling combination therapies with precise tumor targeting and reduced systemic toxicity. For example, nanoparticles carrying trastuzumab and paclitaxel have synergistic effects in preclinical studies, offering a promising avenue for overcoming resistance and minimizing side effects. The use of nanotechnology in mAb therapies is rapidly evolving, with ongoing clinical trials exploring its potential in diverse cancer types.

7.7 Next-Generation Monoclonal Antibodies: Leveraging Protein Dynamics to Overcome Resistance

Proteins are dynamic ensembles, with binding site shapes influenced by hinge-bending motions and conformational shifts. Designing mAbs that target multiple binding site conformations can minimize resistance caused by ligand-induced population shifts and protein mutations. Building on this, next-generation mAbs, including antibody-drug conjugates (ADCs) and bispecific antibodies, are designed to overcome traditional resistance mechanisms and enhance therapeutic precision (109).

ADCs, such as trastuzumab emtansine (T-DM1), combine the targeting precision of mAbs with cytotoxic agents to kill resistant cancer cells. They achieve a 9.6-month progression-free survival advantage in HER2-positive breast cancer—bispecific antibodies further address tumor heterogeneity by simultaneously targeting two antigens, enhancing immune activation (48).

Glycoengineering advancements improve Fc receptor binding and antibody-dependent cellular cytotoxicity (ADCC), amplifying anti-tumor effects. Additionally, site-specific conjugation in ADCs and AI-driven mAb

design enhance therapeutic efficacy and reduce immunogenicity. By leveraging these innovations and protein flexibility, next-generation mAbs address resistance with precision, solidifying their role in modern oncology.

7.8 Real-Time Adaptive mAb Therapies

Real-time adaptive therapies involve a dynamic approach to counteract resistance in mAb treatments by tailoring strategies to tumor evolution. Unlike traditional static regimens, this method employs multiple mAbs targeting distinct binding pockets or epitopes of the same antigen, administered sequentially or as a cocktail. The goal is to reduce selective pressure on any binding site, delaying resistance development. For instance, in HER2-positive breast cancer, combining or alternating trastuzumab with pertuzumab, which targets a different HER2 domain, has shown improved outcomes in clinical settings (10). This approach exploits the biological diversity of tumor cells to limit their adaptive capabilities.

Technological advancements, such as liquid biopsies and next-generation sequencing (NGS), enable real-time monitoring of tumor mutations, guiding timely modifications to therapeutic regimens. For example, in colorectal cancer, detecting KRAS mutations through liquid biopsies in patients receiving cetuximab can prompt a switch to therapies targeting bypass pathways like MET or AXL. This flexibility helps address resistance mechanisms as they emerge.

Adaptive strategies include engineering mAbs with variable binding affinities or glycosylation profiles to enhance immune activation or improve binding efficiency. For example, mAbs designed with higher affinity for Fc receptors can increase antibody-dependent cellular cytotoxicity (ADCC), maintaining immune pressure on tumor cells. However, challenges remain, including regulatory hurdles, higher production costs, and the need for advanced computational models to predict tumor evolution.

Ongoing research and innovation, such as rapid mAb synthesis and AI-driven modeling, are expected to make real-time adaptive therapies more feasible and cost-effective. This approach represents a paradigm shift in oncology, focusing on preemptive and flexible treatment strategies to outpace tumor evolution and resistance.

7.9 Personalized Medicine in mAb Therapies

Personalized medicine revolutionizes mAb therapies by tailoring treatments to the unique molecular profile of each patient's tumor. This precision-based approach relies on advanced genomic, transcriptomic, and proteomic analyses to identify actionable mutations, signaling pathway alterations, or resistance mechanisms. By understanding the specific biological drivers of a tumor, clinicians can optimize therapy selection, improving efficacy and reducing unnecessary side effects. For example, in HER2-positive breast cancer, genomic profiling has guided the use of trastuzumab deruxtecan in patients resistant to trastuzumab. This therapy achieved a 61% objective response rate in resistant cases by targeting HER2-overexpressing cells while delivering a cytotoxic payload. Similarly, in non-small cell lung cancer (NSCLC), proteomic profiling has identified high PD-L1

expression, prompting anti-PD-L1 therapies like atezolizumab, which extended overall survival by 4.2 months compared to standard chemotherapy (34).

Artificial intelligence (AI) and machine learning (ML) are critical in integrating multi-omics data, predicting resistance mechanisms, and personalizing treatment plans. AI-driven algorithms can analyze large datasets to identify biomarkers such as MET amplification or PTEN loss, which guide the use of combination therapies or next-generation mAbs. For example, AI models have accurately predicted responses to bispecific antibodies targeting HER2 and HER3, enabling precise therapy allocation(28).

Personalized medicine also influences clinical trial designs, transitioning from traditional approaches to adaptive trials. These trials use real-time molecular data to assign patients to the most effective treatment arms, improving trial outcomes and patient care. Initiatives like the National Cancer Institute's MATCH trial exemplify this strategy by matching treatments to specific genetic alterations across cancer types.

While personalized medicine faces challenges, including high costs, limited accessibility to advanced diagnostics, and the complexity of integrating diverse datasets, global initiatives are addressing these barriers. Programs like the Cancer Moonshot and the increased adoption of open-access data platforms aim to make precision oncology more accessible and practical.

8 Conclusion

The development and application of monoclonal antibody therapies have revolutionized cancer treatment, offering precision and efficacy in targeting specific molecular pathways. However, the emergence of resistance remains a formidable challenge, diminishing the long-term effectiveness of these therapies. Resistance mechanisms, driven by molecular, cellular, and tumor microenvironmental factors, underscore the complexity and adaptability of cancer biology. To sustain the therapeutic benefits of mAbs, it is crucial to address these resistance mechanisms proactively and develop innovative strategies for their prevention and management.

Resistance arises at the molecular level through antigen mutations, target expression loss, and the activation of compensatory pathways. Targeting these mechanisms requires advancements in antibody engineering, such as bispecific antibodies that simultaneously bind multiple targets or next-generation antibody-drug conjugates (ADCs) that deliver cytotoxic payloads directly to tumor cells, bypassing resistance associated with antigen loss. Incorporating techniques like glycoengineering to enhance Fc receptor binding and antibody-dependent cellular cytotoxicity (ADCC) can further optimize mAb efficacy.

The tumor microenvironment (TME) presents another critical hurdle, with immunosuppressive cells, extracellular matrix components, and hypoxia forming physical and biochemical barriers that limit mAb penetration and activity. Combination therapies are a promising avenue to counteract these barriers. Pairing mAbs with agents that remodel the TME, such as anti-angiogenic drugs or stromal-depleting agents, can enhance antibody delivery and efficacy. Nanoparticle-based delivery systems also offer potential, allowing mAbs to navigate the dense and hypoxic TME more effectively while minimizing systemic toxicity.

Advances in genomic and proteomic profiling are paving the way for precision medicine, enabling personalized treatment plans tailored to individual resistance mechanisms. Liquid biopsies and next-generation sequencing can help identify emerging resistance mutations or alterations, allowing for real-time therapeutic adjustments. This adaptive approach ensures that patients receive the most effective therapies while mitigating the risk of resistance development.

Furthermore, addressing immune evasion mechanisms, such as the upregulation of immune checkpoints like PD-L1, is essential. Combining immune checkpoint inhibitors with mAbs targeting specific tumor antigens can restore anti-tumor immune responses while enhancing the overall efficacy of therapy. Strategies to modulate the immune system, such as cytokine therapies or vaccines, also promise to overcome immune suppression and reinvigorate immune surveillance.

Looking ahead, leveraging artificial intelligence (AI) and machine learning can accelerate drug discovery, optimize treatment combinations, and predict resistance patterns. By integrating data from genomics, proteomics, and clinical outcomes, AI-driven models can guide the development of novel mAbs and therapeutic regimens with greater precision.

Abbreviations

ADC(s): Antibody-drug conjugate(s)

ALL: Acute lymphoblastic leukemia

BiTE(s): Bispecific T-cell engager(s)

CML: Chronic myelogenous leukemia

CRC: Colorectal cancer

EGFR: Epidermal growth factor receptor

GIST: Gastrointestinal stromal tumors

HGF: Hepatocyte growth factor

ICI(s): Immune checkpoint inhibitor(s)

mAb(s): Monoclonal antibody (antibodies)

MET: Hepatocyte growth factor receptor

NSCLC: Non-small cell lung carcinoma

NRTK(s): Non-receptor tyrosine kinase(s)

PD-1: Programmed death-1

PD-L1: Programmed death-ligand 1

RTK(s): Receptor tyrosine kinase(s)

TGFα: Transforming growth factor alpha

TKI(s): Tyrosine kinase inhibitor(s)

HER2: Human epidermal growth factor receptor 2

References

- (1) Adler, M. J., & Dimitrov, D. S. (2012). Therapeutic antibodies against cancer. Hematology/Oncology Clinics of North America, 26(3), 447–481. https://pmc.ncbi.nlm.nih.gov/articles/PMC3334873/
- (2) American Cancer Society. (2023, December 20). Monoclonal antibodies and their side effects. American CancerSociety.https://www.cancer.org/cancer/managing-cancer/treatment-types/immunotherapy/monoclonal-antibodies.html
- (3) Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20. https://doi.org/10.1186/s12929-018-0426-4
- (4) Baez Rodriguez, S. M., Kamel, A., Ciubotaru, G. V., Onose, G., Sevastre, A.-S., & Tataranu, L. G. (2023) etc. An overview of EGFR mechanisms and their implications in targeted therapies for glioblastoma. International Journal of Molecular Sciences, 24(13), 11110. https://doi.org/10.3390/ijms241311110
- (5) Bahar, M. E., Kim, H. J., & Kim, D. R. (2023). Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduction and Targeted Therapy, 8, Article 455. https://doi.org/10.1038/s41392-023-01705-z
- (6) Bahar, M. E., Kim, H. J., & Kim, D. R. (2023). Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduction and Targeted Therapy, 8, Article 455. https://doi.org/10.1038/s41392-023-01705-z
- (7) Bakema, J. E., & van Egmond, M. (2014). Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. In M. W. Wels (Ed.), Molecular Oncology: Causes of Cancer and Targets for Treatment (pp. 355–374). Springer. https://doi.org/10.1007/978-3-319-07911-0_17
- (8) Bardelli, A., & Siena, S. (2010). Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. Journal of Clinical Oncology, 28(7), 1254–1261. https://doi.org/10.1200/JCO.2009.24.6116
- (9) Baselga, J., Carbonell, X., Castañeda-Soto, N. J., Clemens, M., Green, M., Harvey, V., et al. (2005). Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. Journal of Clinical Oncology, 23(10), 2162–2171. https://doi.org/10.1200/JCO.2005.01.014
- (10) Baselga, J., Carbonell, X., Castañeda-Soto, N. J., Clemens, M., Green, M., Harvey, V., et al. (2005). Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. Journal of Clinical Oncology, 23(10), 2162–2171. https://doi.org/10.1200/JCO.2005.01.014
- (11) Beck, A., Goetsch, L., Dumontet, C., & Corvaïa, N. (2017). Strategies and challenges for the next generation of antibody-drug conjugates. Nature Reviews Drug Discovery, 16(5), 315–337. https://doi.org/10.1038/nrd.2016.268

- (12) Bernard-Marty, C., Lebrun, F., Awada, A., & Piccart, M. J. (2006). Monoclonal antibody-based targeted therapy in breast cancer: Current status and future directions. Drugs, 66(12), 1577–1591. https://doi.org/10.2165/00003495-200666120-00004
- (13) Boussiotis, V. A. (2016). Molecular and biochemical aspects of the PD-1 checkpoint pathway. The New England Journal of Medicine, 375(18), 1767–1778. https://doi.org/10.1056/NEJMra1514296
- (14) Boussiotis, V. A. (2016). Molecular and biochemical aspects of the PD-1 checkpoint pathway. The New England Journal of Medicine, 375(18), 1767–1778. https://doi.org/10.1056/NEJMra1514296
- (15) Callaghan, R., Luk, F., & Bebawy, M. (2014). Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metabolism and Disposition, 42(4), 623–631. https://doi.org/10.1124/dmd.113.056176
- (16) Cancer Research UK. (2021, January 8). Monoclonal antibodies (MABs). Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/treatment/targeted-cancer-drugs/types/monoclonal-antibodies
- (17) Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: Successes, limitations, and hopes for the future. British Journal of Pharmacology, 157(2), 220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x
- (18) Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: Successes, limitations, and hopes for the future. British Journal of Pharmacology, 157(2), 220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x
- (19) Chaudhary, B., & Elkord, E. (2016). Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Frontiers in Immunology, 7, Article 183. https://doi.org/10.3389/fimmu.2016.00183
- (20) Chaudhary, B., & Elkord, E. (2016). Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Frontiers in Immunology, 7, Article 183. https://doi.org/10.3389/fimmu.2016.00183
- (21) Chaudhary, B., & Elkord, E. (2016). Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Frontiers in Immunology, 7, Article 183. https://doi.org/10.3389/fimmu.2016.00183
- (22) Chen, J., Guo, Y., Zeng, W., Huang, Y., & Zhao, M. (2019). Metabolic reprogramming in solid tumors: targeting OXPHOS and glycolysis with mAbs. Biomolecules, 10(5), 701. https://doi.org/10.3390/biom10050701
- (23) Cheng, L., Chen, L., Shi, Y., Gu, W., Ding, W., Zheng, X., Liu, Y., Jiang, J., & Zheng, Z. (2024). Efficacy

- and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: A real-world comparison. Molecular Cancer, 23, Article 77. https://doi.org/10.1186/s12943-024-01956-6
- (24) Cheng, L., Chen, L., Shi, Y., Gu, W., Ding, W., Zheng, X., Liu, Y., Jiang, J., & Zheng, Z. (2024). Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: A real-world comparison. Molecular Cancer, 23, Article 77. https://doi.org/10.1186/s12943-024-01956-6
- (25) Cheng, L., Chen, L., Shi, Y., Gu, W., Ding, W., Zheng, X., Liu, Y., Jiang, J., & Zheng, Z. (2024). Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: A real-world comparison. Molecular Cancer, 23, Article 77. https://doi.org/10.1186/s12943-024-01956-6
- (26) Day, C.-P., Merlino, G., & Van Dyke, T. (2015). Preclinical mouse cancer models: A maze of opportunities and challenges. Cell, 163(1), 39–53. https://doi.org/10.1016/j.cell.2015.08.068
- (27) Day, C.-P., Merlino, G., & Van Dyke, T. (2015). Preclinical mouse cancer models: A maze of opportunities and challenges. Cell, 163(1), 39–53. https://doi.org/10.1016/j.cell.2015.08.068
- (28) Dhudum, R., Ganeshpurkar, A., & Pawar, A. (2024). Revolutionizing drug discovery: A comprehensive review of AI applications. Drugs Drug Candidates, 3(1), 148–171. https://doi.org/10.3390/ddc3010009
- (29) Fang, L., He, R., Cai, W., & Huang, D. (2024). Mapping the mutational landscape of immunotherapy-responsive cancers. Nature Genetics, 56(3), 312–325. https://doi.org/10.1038/s41588-024-01948-8
- (30) Ghemrawi, R., Abuamer, L., Kremesh, S., Hussien, G., Ahmed, R., Mousa, W., Khoder, G., & Khair, M. (2024). Revolutionizing cancer treatment: Recent advances in immunotherapy. Biomedicines, 12(9), 2158. https://doi.org/10.3390/biomedicines12092158
- (31) Ghemrawi, R., Abuamer, L., Kremesh, S., Hussien, G., Ahmed, R., Mousa, W., Khoder, G., & Khair, M. (2024). Revolutionizing cancer treatment: Recent advances in immunotherapy. Biomedicines, 12(9), 2158. https://doi.org/10.3390/biomedicines12092158
- (32) Ghemrawi, R., Abuamer, L., Kremesh, S., Hussien, G., Ahmed, R., Mousa, W., Khoder, G., & Khair, M. (2024). Revolutionizing cancer treatment: Recent advances in immunotherapy. Biomedicines, 12(9), 2158. https://doi.org/10.3390/biomedicines12092158
- (33) Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B., & Workman, P. (2013). Personalized cancer medicine: Molecular diagnostics, predictive biomarkers, and drug resistance. Clinical Pharmacology & Therapeutics, 93(3), 252–259. https://doi.org/10.1038/clpt.2012.237
- (34) Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B., & Workman, P. (2013). Personalized cancer medicine: Molecular diagnostics, predictive biomarkers, and drug resistance. Clinical Pharmacology &

- (35) Gravbrot, N., Gilbert-Gard, K., Mehta, P., Ghotmi, Y., Banerjee, M., Mazis, C., & Sundararajan, S. (2019). Therapeutic monoclonal antibodies targeting immune checkpoints for the treatment of solid tumors. Journal of Immunotherapy and Precision Oncology, 8(4), 215–225. https://doi.org/10.3389/fonc.2019.00763
- (36) Haibe, Y., Kreidieh, M., El Hajj, H., Khalifeh, I., Mukherji, D., Temraz, S., & Shamseddine, A. (2020). Resistance mechanisms to anti-angiogenic therapies in cancer. Frontiers in Oncology, 10, 221. https://doi.org/10.3389/fonc.2020.00221
- (37) Hackstadt, T. (1988). Steric hindrance of antibody binding to surface proteins of Coxiella burnetii by phase I lipopolysaccharide. Infection and Immunity, 56(4), 802–807. https://doi.org/10.1128/iai.56.4.802-807.1988
- (38) Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A., & George, A. J. T. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9(4), 325–338. https://doi.org/10.1038/nrd3003
- (39) Heady, D. (2023, October 18). 25 years of Herceptin: A groundbreaking advancement in breast cancer treatment. UCLA Health News.

https://www.uclahealth.org/news/release/25-years-herceptin-groundbreaking-advancement-breast-cancer

- (40) Henke, E., Nandigama, R., & Ergün, S. (2020). Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in Molecular Biosciences, 6(160). https://doi.org/10.3389/fmolb.2019.00160
- (41) Horvath, L., Thienpont, B., Zhao, L., Wolf, D., & Pircher, A. (2020). Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) novel approaches and future outlook. Molecular Cancer, 19, Article 141. https://doi.org/10.1186/s12943-020-01260-z
- (42) Horvath, L., Thienpont, B., Zhao, L., Wolf, D., & Pircher, A. (2020). Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) novel approaches and future outlook. Molecular Cancer, 19, Article 141. https://doi.org/10.1186/s12943-020-01260-z
- (43) Hosseinzadeh, A., Merikhian, P., Naseri, N., Eisavand, M. R., & Farahmand, L. (2022). MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell International, 22, 110. https://doi.org/10.1186/s12935-022-02523-z
- (44) International Agency for Research on Cancer (IARC). (2020, December 15). Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. IARC Press Release No. 292. Retrieved from

https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/

- (45) Iqbal, N., & Iqbal, N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Molecular Biology International, 2014, 852748. https://doi.org/10.1155/2014/852748
- (46) Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692. https://doi.org/10.1016/j.cell.2007.01.029
- (47) Kawaguchi, Y., Kono, K., Mimura, K., Mitsui, F., Sugai, H., Akaike, H., & Fujii, H. (2007). Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. British Journal of Cancer, 97(4), 494–501. https://doi.org/10.1038/sj.bjc.6603901
- (48) Kontermann, R. E. (2012). Dual targeting strategies with bispecific antibodies. MAbs, 4(2), 182–197. https://doi.org/10.4161/mabs.4.2.19000
- (49) Lee, Y. P., Lee, M. S., Kim, H. S., Kim, J. Y., Ahn, J. S., Im, Y. H., & Park, Y. H. (2022). Real-world evidence of trastuzumab, pertuzumab, and docetaxel combination as a first-line treatment for Korean patients with HER2-positive metastatic breast cancer. Cancer Research and Treatment, 54(4), 1130–1137. https://doi.org/10.4143/crt.2021.1103
- (50) Li, T., Niu, M., Zhou, J., Wu, K., & Yi, M. (2024). The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Communication and Signaling, 22, Article 179. https://doi.org/10.1186/s12964-024-01562-5
- (51) Li, X., Xu, W., Jiang, H., & Wang, Y. (2024). Targeting amino acid transporters in cancer immunotherapy. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2024.07.024
- (52) Liu, B., Zhou, H., Tan, L., Siu, K. T. H., & Guan, X.-Y. (2024). Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduction and Targeted Therapy, 9(1), 175. https://doi.org/10.1038/s41392-024-01856-7
- (53) Liu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), Article 1. https://doi.org/10.1186/s12929-019-0592-z
- (54) Liu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), Article 1. https://doi.org/10.1186/s12929-019-0592-z
- (55) Liu, R., Hwang, Y., Liu, I., Lee, C., Tsai, H., Li, H., & Wu, H. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1). https://doi.org/10.1186/s12929-019-0592-z

- (56) Liu, Z. L., Chen, H. H., Zheng, L. L., Sun, L. P., & Shi, L. (2023). Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 8, Article 198. https://doi.org/10.1038/s41392-023-01460-1
- (57) Loganzo, F., Sung, M., & Gerber, H.-P. (2016). Mechanisms of resistance to antibody–drug conjugates. Molecular Cancer Therapeutics, 15(12), 2825–2834. https://doi.org/10.1158/1535-7163.MCT-16-0408
- (58) Mahgoub, E. O., Cho, W. C., Sharifi, M., Falahati, M., Zeinabad, H. A., Mare, H. E., & Hasan, A. (2023). Role of functional genomics in identifying cancer drug resistance and overcoming cancer relapse. Heliyon, 10(1), e22095. https://doi.org/10.1016/j.heliyon.2023.e22095
- (59) Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and prospects. Drug Discovery Today, 24(3), 773–780. https://doi.org/10.1016/j.drudis.2018.11.014
- (60) Maruyama, I. N. (2014). Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells, 3(2), 304–330. https://doi.org/10.3390/cells3020304
- (61) Moon, D., Tae, N., Park, Y., Lee, S.-W., & Kim, D. H. (2022). Development of bispecific antibody for cancer immunotherapy: Focus on T cell engaging antibody. Immune Network, 22(1), e4. https://doi.org/10.4110/in.2022.22.e4
- (62) Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280. https://doi.org/10.1038/ncponc0509
- (63) Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280. https://doi.org/10.1038/ncponc0509
- (64) Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280. https://doi.org/10.1038/ncponc0509
- (65) Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280. https://doi.org/10.1038/ncponc0509
- (66) Niederst, M. J., & Engelman, J. A. (2013). Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Science Signaling, 6(294), ra25. https://doi.org/10.1126/scisignal.2004652
- (67) Niederst, M. J., & Engelman, J. A. (2013). Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Science Signaling, 6(294), ra25. https://doi.org/10.1126/scisignal.2004652

- (68) Niederst, M. J., & Engelman, J. A. (2013). Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Science Signaling, 6(294), re6. https://pmc.ncbi.nlm.nih.gov/articles/PMC3876281/
- (69) Olson, B. M., & McNeel, D. G. (2013). Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Cancer Immunology, Immunotherapy, 62(7), 1123–1135. https://doi.org/10.1007/s00262-012-1387-9
- (70) Paul, M. K., & Mukhopadhyay, A. K. (2004). Tyrosine kinase Role and significance in cancer. International Journal of Medical Sciences, 1(2), 101–115. https://doi.org/10.7150/ijms.1.101
- (71) Pradeep, S. P., & Bahal, R. (2024, November 22). Advancements in cell-penetrating monoclonal antibody treatment. Oncotarget, 15, 815–816. https://doi.org/10.18632/oncotarget.28674
- (72) Quinteros, D. A., Bermúdez, J. M., Ravetti, S., Cid, A., Allemandi, D. A., & Palma, S. D. (2017). Therapeutic use of monoclonal antibodies: General aspects and challenges for drug delivery. In E. Andronescu & A. M. Grumezescu (Eds.), Nanostructures for Drug Delivery (pp. 807–833). Elsevier. https://doi.org/10.1016/B978-0-323-46143-6.00025-7
- (73) Rapid Novor. (2023). Antibody glycan engineering: increasing potency by afucosylation. RapidNovor Knowledge Hub. https://www.rapidnovor.com/antibody-glycan-engineering/
- (74) Rodríguez-Nava, C., Ortuño-Pineda, C., Illades-Aguiar, B., Flores-Alfaro, E., Leyva-Vázquez, M. A., Parra-Rojas, I., et al. (2023). Mechanisms of action and limitations of monoclonal antibodies and single chain fragment variable (scFv) in cancer treatment. Biomedicines, 11(6), 1610. https://doi.org/10.3390/biomedicines11061610
- (75) Rodríguez-Nava, C., Ortuño-Pineda, C., Illades-Aguiar, B., Flores-Alfaro, E., Leyva-Vázquez, M. A., Parra-Rojas, I., Del Moral-Hernández, O., Vences-Velázquez, A., Cortés-Sarabia, K., & Alarcón-Romero, L. D. C. (2023). Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines, 11(6), 1610. https://doi.org/10.3390/biomedicines11061610
- (76) Roskoski, R., Jr. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological Research, 79, 34–74. https://doi.org/10.1016/j.phrs.2013.11.002
- (77) Sadida, H. Q., Abdulla, A., Al Marzooqi, S., Hashem, S., Macha, M. A., Al-Shabeeb Akil, A. S., & Bhat, A. A. (2023). Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Translational Oncology, 39, 101821. https://doi.org/10.1016/j.tranon.2023.101821
- (78) Salles, G., Barrett, M., Foà, R., Maurer, J., O'Brien, S., Valente, N., Wenger, M., & Maloney, D. G. (2017). Rituximab in B-cell hematologic malignancies: A review of 20 years of clinical experience. Blood Advances, 1(20), 2388–2406. https://doi.org/10.1182/bloodadvances.2017007903

- (79) Shiravand, Y., Khodadadi, F., Kashani, S. M. A., Hosseini-Fard, S. R., Hosseini, S., Sadeghirad, & Kulasinghe, A. (2022). Immune checkpoint inhibitors in cancer therapy. Frontiers in Immunology, 13, Article 912391. https://doi.org/10.3389/fimmu.2022.912391
- (80) Shiravand, Y., Khodadadi, F., Kashani, S. M. A., Hosseini-Fard, S. R., Hosseini, S., Sadeghirad, & Kulasinghe, A. (2022). Immune checkpoint inhibitors in cancer therapy. Frontiers in Immunology, 13, Article 912391. https://doi.org/10.3389/fimmu.2022.912391
- (81) Shuptrine, C., Surana, R., & Weiner, L. M. (2012). Monoclonal antibodies for the treatment of cancer. Seminars in Cancer Biology, 22(1), 3–13. https://doi.org/10.1016/j.semcancer.2011.12.009
- (82) Shuptrine, C., Surana, R., & Weiner, L. M. (2012). Monoclonal antibodies for the treatment of cancer. Seminars in Cancer Biology, 22(1), 3–13. https://doi.org/10.1016/j.semcancer.2011.12.009
- (83) Shuptrine, C., Surana, R., & Weiner, L. M. (2012). Monoclonal antibodies for the treatment of cancer. Seminars in Cancer Biology, 22(1), 3–13. https://doi.org/10.1016/j.semcancer.2011.12.009
- (84) Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine, 344(11), 783–792. https://doi.org/10.1056/NEJM200103153441101
- (85) Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine, 344(11), 783–792. https://doi.org/10.1056/NEJM200103153441101
- (86) Sledge, G. W., Mamounas, E. P., Hortobagyi, G. N., Burstein, H. J., Goodwin, P. J., & Wolff, A. C. (2014). Past, present, and future challenges in breast cancer treatment. Journal of Clinical Oncology, 32(19), 1979–1986. https://doi.org/10.1200/JCO.2014.55.4139
- (87) Tonon, G., Rizzolio, F., Visentin, F., & Scattolin, T. (2024). Antibody-drug conjugates for cancer therapy: From metallodrugs to nature-inspired payloads. International Journal of Molecular Sciences, 25(16), 8651. https://doi.org/10.3390/ijms25168651
- (88) Tonon, G., Rizzolio, F., Visentin, F., & Scattolin, T. (2024). Antibody drug conjugates for cancer therapy: From metallodrugs to nature-inspired payloads. International Journal of Molecular Sciences, 25(16), 8651. https://doi.org/10.3390/ijms25168651
- (89) Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. https://doi.org/10.1056/NEJMoa1200690
- (90) Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence.

- (91) Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
- (92) Tsao, L. C., Force, J., & Hartman, Z. C. (2021). Mechanisms of therapeutic anti-tumor monoclonal antibodies. Frontiers in Oncology, 11(PMCID: PMC8448950). https://doi.org/10.3389/fonc.2021.673636
- (93) Tsao, L. C., Force, J., & Hartman, Z. C. (2021). Mechanisms of therapeutic anti-tumor monoclonal antibodies. Frontiers in Oncology, 11(PMCID: PMC8448950). https://doi.org/10.3389/fonc.2021.673636.
- (94) Tsao, L. C., Force, J., & Hartman, Z. C. (2021). Mechanisms of therapeutic anti-tumor monoclonal antibodies. Frontiers in Oncology, 11(PMCID: PMC8448950). https://doi.org/10.3389/fonc.2021.673636
- (95) Valabrega, G., Montemurro, F., & Aglietta, M. (2007). Trastuzumab: Mechanism of action, resistance, and future perspectives in HER2-overexpressing breast cancer. Annals of Oncology, 18(6), 977–984. https://doi.org/10.1093/annonc/mdl475
- (96) Van der Horst, H. J., & Mutis, T. (2024). Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunological Reviews. Advance online publication. https://doi.org/10.1111/imr.13394
- (97) Van der Horst, H. J., Nijhof, I. S., Mutis, T., & Chamuleau, M. E. D. (2020). Fc-engineered antibodies with enhanced Fc-effector function for the treatment of B-cell malignancies. Cancers (Basel), 12(10), 3041. https://doi.org/10.3390/cancers12103041
- (98) Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: A review. JAMA, 321(3), 288–300. https://doi.org/10.1001/jama.2018.19323
- (99) Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5
- (100) Wang, Z. H., Zheng, Z. Q., Jia, S. C., Liu, S. N., Xiao, X. F., Chen, G. Y., & Liang, W. Q., etc. (2022). Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Frontiers in Oncology, 12, 9584623. https://doi.org/10.3389/fonc.2022.9584623
- (101) Wang, Z. H., Zheng, Z. Q., Jia, S. C., Liu, S. N., Xiao, X. F., Chen, G. Y., & Liang, W. Q., etc. (2022). Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Frontiers in Oncology, 12, 9584623. https://doi.org/10.3389/fonc.2022.9584623
- (102) World Health Organization. (n.d.). Monoclonal antibodies (mABs). World Health Organization. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-specifications/norms-and-specifications/no

- (103) Wu, Y., Yi, M., Zhu, S., Wang, H., & Wu, K. (2021). Recent advances and challenges of bispecific antibodies in solid tumors. Experimental Hematology & Oncology, 10(1), Article 56. https://doi.org/10.1186/s40164-021-00250-1
- (104) Wu, Y., Yi, M., Zhu, S., Wang, H., & Wu, K. (2021). Recent advances and challenges of bispecific antibodies in solid tumors. Experimental Hematology & Oncology, 10(1), Article 56. https://doi.org/10.1186/s40164-021-00250-1
- (105) Xue, X., & Liang, X.-J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese Journal of Cancer, 31(2), 100–109. https://doi.org/10.5732/cjc.011.10326
- (106) Xue, X., & Liang, X.-J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese Journal of Cancer, 31(2), 100–109. https://doi.org/10.5732/cjc.011.10326
- (107) Xue, X., & Liang, X.-J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese Journal of Cancer, 31(2), 100–109. https://doi.org/10.5732/cjc.011.10326
- (108) Xue, X., & Liang, X.-J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese Journal of Cancer, 31(2), 100–109. https://doi.org/10.5732/cjc.011.10326
- (109) Xue, X., & Liang, X.-J. (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese Journal of Cancer, 31(2), 100–109. https://doi.org/10.5732/cjc.011.10326
- (110) Yabroff, K. R., Lund, J., Kepka, D., & Mariotto, A. (2011). Economic burden of cancer in the US: Estimates, projections, and future research. Cancer Epidemiology, Biomarkers & Prevention, 20(10), 2006–2014. https://doi.org/10.1158/1055-9965.EPI-11-0650
- (111) Yip, H. Y. K., & Papa, A. (2021). Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells, 10(3), 659. https://doi.org/10.3390/cells10030659
- (112) Zhao, Y., Yang, Y., & Wang, H. (2020). Tumor antigen heterogeneity and resistance to immune checkpoint inhibitors. Oncotarget, 11(7), 624–637. https://doi.org/10.18632/oncotarget.15837